结构及材质:
1)内箱材质:不锈钢板(SUS #304 1.0mm厚)
2)外箱材质:不锈钢板经雾化处理 (SUS #304 1.0mm厚)
3)保温材质:硬质Polyurethane发泡及玻璃棉
4)送风循环系统:
a.90W马达1支
b.不锈钢加长轴心
c.多翼式扇叶(SIRCCO FAN)
5)箱门: 单片门,单窗口,左开,把手在右手边
a.窗口270x360x40mm 3层真空层
b.平面嵌入式把手
c.后钮:SUS #304
恒温恒湿机的工作原理是什么?
恒温恒湿机主要依靠制冷系统、加热系统和湿度控制系统来维持试验环境的恒定性
1)制冷系统:这是恒温恒湿机的关键部分,通常采用蒸汽压缩式制冷。它主要由压缩机、冷凝器、节流机构和蒸发器组成。当需要低于-55℃的试验温度时,单级制冷可能无法满足要求,此时会使用复叠式制冷。复叠式制冷系统由高温部分和低温部分组成,每部分都是一个独立的制冷系统。高温部分的制冷剂蒸发吸收来自低温部分制冷剂的热量,而低温部分的制冷剂蒸发则从被冷却的对象(如试验机内的空气)吸热。2)加热系统:当试验箱内的温度低于设定值时,加热系统会启动,通常采用电加热器来升高温度,以保持试验箱内的恒定温度。3)湿度控制系统:设备内部设置有水箱和蒸发器,水通过蒸发器蒸发后吸收空气中的热量,使温度下降。同时,恒湿机采用玻璃透气法或超声波稳湿技术自动调节湿度,以保持设定的湿度水平。 总的来说,恒温恒湿机的工作原理确保了在各种环境条件下产品的性和材料的稳定性,对于科研、生产和质量控制等领域。
如何维护恒温恒湿机?
恒温恒湿机的维护是确保其长期稳定运行和保持测试准确性的关键。以下是一些维护建议:
1)清洁设备:定期清洁试验箱内外,确保传感器和测试区域无尘埃和污垢,以免影响温湿度的准确性。2)检查水箱:定期检查并清洁水箱,避免水垢和微生物的积累,同时确保水质符合要求。3)检查电气系统:定期检查电气接线是否牢固,以及是否存在短路或磨损的风险。4)润滑移动部件:对于有移动部件的恒温恒湿机,如风扇等,应定期检查并添加适当的润滑油。5)校准传感器:定期校准温度和湿度传感器,以确保测量数据的准确性。6)检查密封性:检查试验箱门的密封性能,确保没有漏气现象,以维持箱内的温湿度稳定。7)检查制冷系统:定期检查制冷剂是否充足,以及压缩机和冷凝器的工作状态。8)检查加热元件:定期检查加热元件的工作状态,确保加热均匀且无故障。9)软件更新:如果恒温恒湿机配备了控制软件,应确保软件保持状态,以获得佳性能和补丁。10)记录维护活动:建立维护日志,记录每次维护的日期、内容和发现的问题,以便跟踪设备状况。11)维护:对于复杂的维护任务,如更换制冷剂或修理控制系统,建议联系的技术人员进行。
通过遵循上述建议,可以有效地延长恒温恒湿机的使用寿命,并确保其处于佳工作状态。
恒温恒湿试验机被广泛应用于电子电器、汽车、航空航天、医以及科研等领域。这些行业对环境条件有着严格的要求,因为产品的质量和性能往往受到温度和湿度的影响。例如,在电子电器行业中,恒温恒湿试验机用于评估电子产品的环境适应性和防护等级;汽车行业中则用于测试汽车零部件的耐久性;在航空航天领域,它用来验器材在端环境下的性;医行业中则用于品稳定性测试等。恒温恒湿试验机通过其的温湿度控制能力,为各行各业提供了的产品性能评估和质量检测手段。尽管存在一些限性,但其优势使其成为的测试设备。
万能拉力试验机在材料弯曲测试中是如何工作的?
万能拉力试验机在材料弯曲测试中通过测定材料承受弯曲载荷时的力学特性来工作。具体来说,万能拉力试验机在执行弯曲测试时,会将样品放置在下支点上,然后利用上支点对样品施加载荷。这样,样品会承受弯曲载荷,试验机能够测试样品在受压时的力学反应以及样品的弯曲变形。通过这种测试,可以获取材料的弯曲强度、弯曲模量和破断点挠度等重要。总的来说,万能拉力试验机在材料弯曲测试中的工作原理是通过对材料施加弯曲载荷并测量其反应来评估材料的弯曲性能。这些信息对于理解材料在实际应用中的表现,有助于材料的开发和质量控制。
如何理解材料的塑性阶段?
材料的塑性阶段是指材料在受力作用下发生不可逆的永久变形,这一阶段的变形即使在移除外力后也不会恢复。塑性阶段是材料力学性能的一个重要部分,通常出现在弹性阶段之后。当材料受到的应力超过其屈服强度时,就会进入塑性阶段。在这个阶段,材料会发生永久性的结构改变,即使卸载,这些改变也不会消失。以下是对材料塑性阶段的理解:
1)弹性变形与塑性变形:在材料的应力-应变曲线中,初始阶段表现为线性关系,即弹性阶段。在这一阶段,材料发生的变形在卸载后可以恢复。而当应力超过某个临界点,即屈服点后,材料会进入塑性阶段,此时即使应力增加,材料仍会继续变形。2)材料的塑性:评价材料塑性的常见包括伸长率和断面收缩率。这些反映了材料在塑性变形过程中的能量吸收能力和变形能力。例如,钢筋的冷弯性能和延伸率就是其塑性的体现。3)弹塑性材料:并非材料都有明显的塑性阶段。有些材料如铸铁,可能在弹性阶段后就直接破坏,而没有明显的塑性变形。相反,像混凝土这类材料可能从开始变形就伴随着塑性变形。4)Bauschinger效应:这是一种由于预加塑性拉伸荷载而导致压缩屈服应力降低的现象。这表明材料的塑性行为可能会受到先前加载历史的影响。
总的来说,理解材料的塑性阶段对于工程设计和材料选择,因为它关系到材料在实际使用中的和性。通过万能拉力试验机等测试设备,可以准确地评估材料的塑性行为,从而确保材料能够在实际应用中承受预期的载荷而不发生破坏。